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Università di Pisa

Pisa, Italy

Istituto Italiano di Tecnologia

Genoa, Italy

antonio.bicchi@unipi.it

Abstract—Risk minimization has historically been tackled with
chance constraints or with risk-aware measure acting on stochastic
cost functions. To characterize risk in an obstacle avoidance setting,
the computation of the probability of collision is of paramount
importance.

This paper explores and compares two approaches to compute
such probabilities for a robot and an obstacle under Gaussian
uncertainty along a continuous path. We first establish a
theoretical framework, show numerical simulations, and finally
we highlight the advantages and shortcomings of the considered
approaches.

I. INTRODUCTION

Evaluating the risk associated to a set of action is becoming a

question of paramount importance in the robotics field, as more

and more autonomous systems are asked to perform safety-

critical and human-centered tasks. Many applications including

warehouse management, autonomous driving and cooperative

robotics require the system not only to be safe in an instant in

time, but to plan actions that also assure safety in the future.

Uncertainty plays a central role in the process of associating a

measure of how planned actions could be problematic: what

the agent knows about itself and its environment can drastically

change the evaluation of a possible plan.

The debate on what constitutes a risk entails various

fields, from economics to the studies of dynamical systems

[1] [2], but generally it is seen as the probability of an

hazard weighted its severity. In robotics, risk minimization is

traditionally associated to the field of stochastic optimization,

where potentially all the variables involved in the optimization

problem are random: while the control actions on the robot may

be deterministic, the outcome of these actions will follow a

possibly unknown probability density function. To account for

such stochasticity in an optimization setting the usual tools are

risk-aware measures [3] [4], which are mathematical operators

that account for the tail of the probability density function

of the cost, and chance constraints [5]–[8] that ensure that

imposed restrictions on the states hold in a probabilistic sense.

In the case of trajectory planning, the usual definition of risk

is either the probability of of the robot not being able to finish
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the path [9], or the probability of collision with an uncertain

obstacle at any timestep [5]. This paper explores two different

ways of computing this probability in a continuous setting,

what proprieties the two readings have and what additional

features these fail to capture.

II. COLLISION EVENT

A. Background

Consider a robot and an obstacle living in a working

environment W ⊆ R2. Let XR(xR) ∈ W be the set of points

occupied by the robot and XO(xO) ∈ W the set occupied by

the obstacle, where xR ∈ W and xO ∈ W are the reference

frames locations respectively of the robot and obstacle. The

collision condition [6] is then defined as

C(xR, xO) : XR(xR) ∩ XO(xO) ̸= {∅}. (1)

The probability of this event is defined as

P (C) =

∫

xR

∫

xO

IC(xR, xO)p(xR, xO)dxRdxO, (2)

where IC(xR, xO) is the indicator function of the set XR(xR)∩
XO(xO) and p(xR, xO) is the joint probability density function

of xR and xO.

B. Problem Statement

Let’s consider now the case where XR and XO are two i.i.d.

Gaussian random variables (we capitalize these for clarity)

XR ∈ W ∼ N (µR,ΣR), (3)

XO ∈ W ∼ N (µO,ΣO). (4)

The distance between the robot and the obstacle DRO =
XR − XO is an additional R.V. in R2 which follows the

probability distribution

dRO(x) = N (x|µR − µO,ΣT ), (5)

where ΣT = ΣR+ΣO is the combined covariance matrix [10].

The configuration space technique allows the problem of

deterministic collision avoidance to be restated in terms of an

emptied out set XR and of an appropriately enlarged obstacle
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set XO [11]. Following the same approach, but inverted in

principle, we consider the obstacles to be punctual, and we

enlarge the robot set XR. We can then compute the probability

of DRO ∈ XR(0), the set occupied by the obstacle centered

in the origin as

P (C) =

∫

XR(0)

dRO(x)dx. (6)

This formula reframes the probability computation of the

collision event from (2), removing the joint probability density

function p(xR, xO) from the calculation and integrating over

a singular domain.

III. APPROACH

A. Event Definition

Computing the failure condition over a trajectory can lead to

different results due to different definition of what constitutes a

collision along a trajectory, the probability of which we define

as risk.

The first way to interpret the collision event on the trajectory

is to regard it to be a singular occurrence. Consider a

unidimensional robot of thickness ∆t moving along a path,

orthogonal with respect to the robot’s dimension, in W. The

area swept by such movement forms a tube, which we call

TR ∈ W, so that the collision condition becomes

Ct0 : TR ∩ XO ̸= {∅}. (7)

The second possibility is to look at the robot moving along the

path as multiple subsequent event. This prospective leads to

a subdivision of the tube TR along the direction of the trace

as infinitesimal slices TRi of thickness ∆t, so that TR1 ∪
TR2 ∪ ...∪ TRn = TR and TRi ̸= TRj ∀i ̸= j. The collision

conditions are then

Cti : TRi ∩ XO ̸= {∅}, CT :
n
∨

i=1

Cti. (8)
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Fig. 1. Example of set TR along with an approximate subdivision.

Assume now that

Cti ⊥ Ctj ∀i ̸= j, (9)

then, using De Morgan’s law, we can reformulate the collective

condition of (8) as

CT :

n
∨

i=1

Cti =

n
∧

i=1

Cti. (10)

The probability associated to (10) then is

P (CT ) = lim
n→∞

1−
n
∏

i=1

(1− P (Cti)). (11)

These two approaches paint two faces of the same coin.

In the first case the event is regarded as unique, and the

stochastic variable associated with it has a singular realization:

all the points inside TR are considered at once. In the second

procedure we’re considering a stochastic process, as each event

Cti is its own i.i.d. random variable with an independent

realization. Additionally, while the first interpretation considers

time to be “frozen”, the second method, studying a stochastic

process, is compatible with its passage.

B. Tube parametrization and Probability Computation

Let the parametrization µR(s) : [0, 1] → W represent the

path the robot will follow, with s ∈ [0, 1] being the variable of

the curvilinear parametrization. The tube TR around such trace

is parametrized with a function Φ(s, t) : [0, 1]×R+ → W that

in R2 can be built as a locally homeomorphic map

Φ(s, θ) =

[

µRx(s)− θ
dµRy

ds
(s)

µRy(s) + θ dµRx

ds
(s)

]

. (12)

This allows us to compute the probability of collision for the

whole tube TR and a point-like obstacle as

P (Ct0) =

∫ ∆t

−∆t

∫ 1

0

N (Φ(γ, θ)|µO,ΣT )| det(∇Φ)|dγdθ.

(13)

Remark: With (12) being only locally homeomorphic, and

possibly parametrizing the same set in W multiple times, (13)

will be only an approximation of (6), as we will discuss later.

Considering now an infinitesimal partition along the path µR(s)
of the tube TR, where the infinitesimal constituent is ds → 0,

the probability on the slice TRi can be computed as

P (Cti) =

∫ ∆t

−∆t

N (Φ(si, θ)|µO, CT )
∣

∣

∣

∣

dµR

dγ

∣

∣

∣

∣dθds. (14)

The probability of C̄T of no collision event happening is then

the infinite product (11) of (1−P (Cti)) (14), and through the

Volterra Product Integral [12] we rewrite it as

P (CT ) = 1−exp(−

∫ 1

0

∫ ∆t

−∆t

N (Φ(s, θ)|µO,ΣT )
∣

∣

∣

∣

dµR

ds

∣

∣

∣

∣dθds).

(15)

IV. NUMERICAL EXAMPLES

To show the behavior of the equations (13) and (15), some

descriptive numerical examples are here displayed. Let us

consider a simple case where (12) derives from the parametrized

curve

µ1(s) =

[

5− 2.5s
cos(2πs)− 1

]

, (16)

with a fixed thickness ∆t = 0.1. An obstacle is placed at
[

3.75 −0.05
]

right before the starting position, as shown in

figure 2. ΣT is assigned to be the identity matrix multiplied

by some scaling. Notice how (15) is always lower than (13)
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Fig. 2. Cosine path. Left: trend of (13) in blue and (15) in yellow. In black
the true probability P (CT ) obtained from (6) is highlighted. Right: (16) path
parametrization with TR, black + are placed at every 0.1 multiple in s. The
circles the obstacle show a std of distance around the obstacle for the two
covariances considered.
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Fig. 3. Circular path with three turns.

while having the same trend. Also notice how at around s ≈
0.5, the nearest point to the obstacle, the slope of both the

approaches changes. The growth in probability only happens

around the obstacle at around s ≈ [0.3, 0.7], everywhere else

the curves are stationary. While keeping the same thickness

∆t, we consider a different parametrization of the path

µ2(s) =

[

4 + cos(6πs)
sin(6πs)

]

, (17)

with an obstacle at xo =
[

4.5 0.6
]

. This path makes three

turns around the circle, as shown in figure 17. At each full

round the probability of collision stacks, in the case of (13)

additively, while for (15) in a multiplicative way. Both figures

2 and 3 show the value of (6) on the set TR.

Consider now, instead, the case in which ∆t is variable

inside the range [0, 1.2], and the covariance matrix ΣT = I is

fixed with scaling 10−1 and 10−2. The trace under scrutiny is

TABLE I
COMPARISON BETWEEN THE VALUES OBTAINED FROM (13) AND (6) IN

BOTH SCENARIOS SHOWN IN FIGURE 2 AND 3.

Path⧹Scaling (13) P (CT ), s = 1 (6) True P (CT ), s = 1 P (CT ), s = 1

3

Cosine⧹10−1 0.275253 0.275188 ⧸

Cosine⧹10−2 0.707647 0.707559 ⧸

Circle⧹10−1 0.677078 0.225779 0.223350
Circle⧹10−2 0.385130 0.129458 0.128376
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Fig. 4. Scaling at 10−1 Left: trend of (13) and (15) against ∆t, multiple
obstacle considered. Right: (18) path parametrization with largest TR.

the one of figure 4 parametrized by

µ3(s) =

[

5(1− s)
0.5 sin(5s)

]

, (18)

where the probabilities (13) and (15) are computed on the

whole trajectory.

We see how the probabilities computed are very dependent

on the scaling considered, with scaling 10−2 the slope of the

graphs is very steep and obstacles that aren’t near the path

aren’t influential on the computation. Also notice how (13)

covers the whole range [0, 1] of possible probabilities, while

(15) caps at 1− e−1.
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Fig. 5. Scaling at 10−2 Left: trend of (13) and (15) against ∆t, multiple
obstacle considered. Right: (18) path parametrization with largest TR.
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TABLE II
OBSTACLE POSITION IN FIGURE 4, 5.

Obstacle 1 2 3 4 5

Position

[

2.5
1

] [

1.9
0

] [

5
3

] [

3
−0.455

] [

4.76
0.96

]

V. DISCUSSION

The method considered shows promise, as, thanks to the

continuous approach to the parametrization, it characterizes

the probability of collision without the need of subdividing the

trace in “stages” using Boole’s Lemma [6] [13]. The continuous

nature of the two approaches makes the measure more robust

with respect to methods based e.g. on occupancy grids [9].

Indeed, in such methods, the computed risk depends on the

discretization of the grid, which is an issue that doesn’t appear

in our approach.

The same continuous nature also brings disadvantages, the

main one being the double integral present both in (13) and

(15), which makes the approaches computationally inefficient.

The behavior of periodic and overlapping paths, shown in

figure 3, is also worthy of discussion. The first thing to notice

is how the probability of collision defined by (13) adds onto

itself at each revolution, while (15) is multiplicative following

(11) (e.g. with three turns P (CT ) = 1− (1− P (Ct))
3, where

P (Ct) is the value of (15) after a revolution). Evidently the

additivity of (13) is an issue, in fact if the path is repeated

too many times, the probability P (Ct0) may result in a value

greater than 1. So while this approximation of (6) seems sound,

as also shown in table I, the computation of the probability

of recurring traces can lead to non-sensical results without

additional considerations or alternative approaches to define

the integration set. The multiplicativity of (15), instead, not

only ensures that P (CT ) ∈ [0, 1] for repeated trajectories, but

also lets us consider subsets of the path µ(s) as independent

and decompose the probability as

P (C̄T , s0, sf ) = P (C̄T , s0, s
∗)P (C̄T , s

∗, sf ), (19)

∀s0 ≤ s∗ ≤ sf ∈ [0, 1]. This probability decomposition can be

interpreted as the “risk to go”: the path traversed between s0
and s∗ doesn’t influence the risk computation on the remaining

part of the path.

Other issues appear, for both approaches, around the choice

of ∆t. The first concern is a conceptual one, as we’d like

to have a measure of risk which is intrinsic to the path

and the environment, not based on a parameter dependent

on the dimensions of the robot. The second point is that by

considering a too large ∆t the probability computations are

not valid anymore. This happens because (12) is only locally

homeomorphic, so that in the case of (15) the sets TRi overlap

and (9) doesn’t hold anymore, while for (13) the set TR folds

onto itself leading to inaccurate results. This is what happened

in figure 2, where a single obstacle has been accounted for

twice and a change of slope appears, and what would have

happened in figure 3 if ∆t had become large enough.

VI. CONCLUSIONS

We have presented two methods of computing the probability

of collision between a robot and an obstacle under Gaussian

uncertainty. We’ve formally reasoned about the definition of

collision event and how different interpretations of it lead to

different formulations of its probability. The expressions found

have then been compared through some numerical examples

and both boons and disadvantages have been discussed.

In future work we plan to work on these disadvantages,

particularly we would like to make the measure of risk intrinsic

to the parametrization and not dependent on the robot’s size.
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